3.353 \(\int \frac {A+B \tan (c+d x)}{(a+b \tan (c+d x))^{3/2}} \, dx\)

Optimal. Leaf size=138 \[ -\frac {2 (A b-a B)}{d \left (a^2+b^2\right ) \sqrt {a+b \tan (c+d x)}}-\frac {(B+i A) \tanh ^{-1}\left (\frac {\sqrt {a+b \tan (c+d x)}}{\sqrt {a-i b}}\right )}{d (a-i b)^{3/2}}+\frac {(-B+i A) \tanh ^{-1}\left (\frac {\sqrt {a+b \tan (c+d x)}}{\sqrt {a+i b}}\right )}{d (a+i b)^{3/2}} \]

[Out]

-(I*A+B)*arctanh((a+b*tan(d*x+c))^(1/2)/(a-I*b)^(1/2))/(a-I*b)^(3/2)/d+(I*A-B)*arctanh((a+b*tan(d*x+c))^(1/2)/
(a+I*b)^(1/2))/(a+I*b)^(3/2)/d-2*(A*b-B*a)/(a^2+b^2)/d/(a+b*tan(d*x+c))^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.24, antiderivative size = 138, normalized size of antiderivative = 1.00, number of steps used = 8, number of rules used = 5, integrand size = 25, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.200, Rules used = {3529, 3539, 3537, 63, 208} \[ -\frac {2 (A b-a B)}{d \left (a^2+b^2\right ) \sqrt {a+b \tan (c+d x)}}-\frac {(B+i A) \tanh ^{-1}\left (\frac {\sqrt {a+b \tan (c+d x)}}{\sqrt {a-i b}}\right )}{d (a-i b)^{3/2}}+\frac {(-B+i A) \tanh ^{-1}\left (\frac {\sqrt {a+b \tan (c+d x)}}{\sqrt {a+i b}}\right )}{d (a+i b)^{3/2}} \]

Antiderivative was successfully verified.

[In]

Int[(A + B*Tan[c + d*x])/(a + b*Tan[c + d*x])^(3/2),x]

[Out]

-(((I*A + B)*ArcTanh[Sqrt[a + b*Tan[c + d*x]]/Sqrt[a - I*b]])/((a - I*b)^(3/2)*d)) + ((I*A - B)*ArcTanh[Sqrt[a
 + b*Tan[c + d*x]]/Sqrt[a + I*b]])/((a + I*b)^(3/2)*d) - (2*(A*b - a*B))/((a^2 + b^2)*d*Sqrt[a + b*Tan[c + d*x
]])

Rule 63

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - (a*d)/b + (d*x^p)/b)^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 208

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-(a/b), 2]*ArcTanh[x/Rt[-(a/b), 2]])/a, x] /; FreeQ[{a,
b}, x] && NegQ[a/b]

Rule 3529

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)]), x_Symbol] :> Simp[((
b*c - a*d)*(a + b*Tan[e + f*x])^(m + 1))/(f*(m + 1)*(a^2 + b^2)), x] + Dist[1/(a^2 + b^2), Int[(a + b*Tan[e +
f*x])^(m + 1)*Simp[a*c + b*d - (b*c - a*d)*Tan[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c
 - a*d, 0] && NeQ[a^2 + b^2, 0] && LtQ[m, -1]

Rule 3537

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*tan[(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[(c*
d)/f, Subst[Int[(a + (b*x)/d)^m/(d^2 + c*x), x], x, d*Tan[e + f*x]], x] /; FreeQ[{a, b, c, d, e, f, m}, x] &&
NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && EqQ[c^2 + d^2, 0]

Rule 3539

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[(c
 + I*d)/2, Int[(a + b*Tan[e + f*x])^m*(1 - I*Tan[e + f*x]), x], x] + Dist[(c - I*d)/2, Int[(a + b*Tan[e + f*x]
)^m*(1 + I*Tan[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f, m}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0]
&& NeQ[c^2 + d^2, 0] &&  !IntegerQ[m]

Rubi steps

\begin {align*} \int \frac {A+B \tan (c+d x)}{(a+b \tan (c+d x))^{3/2}} \, dx &=-\frac {2 (A b-a B)}{\left (a^2+b^2\right ) d \sqrt {a+b \tan (c+d x)}}+\frac {\int \frac {a A+b B-(A b-a B) \tan (c+d x)}{\sqrt {a+b \tan (c+d x)}} \, dx}{a^2+b^2}\\ &=-\frac {2 (A b-a B)}{\left (a^2+b^2\right ) d \sqrt {a+b \tan (c+d x)}}+\frac {(A-i B) \int \frac {1+i \tan (c+d x)}{\sqrt {a+b \tan (c+d x)}} \, dx}{2 (a-i b)}+\frac {(A+i B) \int \frac {1-i \tan (c+d x)}{\sqrt {a+b \tan (c+d x)}} \, dx}{2 (a+i b)}\\ &=-\frac {2 (A b-a B)}{\left (a^2+b^2\right ) d \sqrt {a+b \tan (c+d x)}}-\frac {(i (A+i B)) \operatorname {Subst}\left (\int \frac {1}{(-1+x) \sqrt {a+i b x}} \, dx,x,-i \tan (c+d x)\right )}{2 (a+i b) d}+\frac {(i A+B) \operatorname {Subst}\left (\int \frac {1}{(-1+x) \sqrt {a-i b x}} \, dx,x,i \tan (c+d x)\right )}{2 (a-i b) d}\\ &=-\frac {2 (A b-a B)}{\left (a^2+b^2\right ) d \sqrt {a+b \tan (c+d x)}}-\frac {(A-i B) \operatorname {Subst}\left (\int \frac {1}{-1-\frac {i a}{b}+\frac {i x^2}{b}} \, dx,x,\sqrt {a+b \tan (c+d x)}\right )}{(a-i b) b d}-\frac {(A+i B) \operatorname {Subst}\left (\int \frac {1}{-1+\frac {i a}{b}-\frac {i x^2}{b}} \, dx,x,\sqrt {a+b \tan (c+d x)}\right )}{(a+i b) b d}\\ &=-\frac {(i A+B) \tanh ^{-1}\left (\frac {\sqrt {a+b \tan (c+d x)}}{\sqrt {a-i b}}\right )}{(a-i b)^{3/2} d}+\frac {(i A-B) \tanh ^{-1}\left (\frac {\sqrt {a+b \tan (c+d x)}}{\sqrt {a+i b}}\right )}{(a+i b)^{3/2} d}-\frac {2 (A b-a B)}{\left (a^2+b^2\right ) d \sqrt {a+b \tan (c+d x)}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C]  time = 0.21, size = 113, normalized size = 0.82 \[ \frac {i \left (\frac {(A-i B) \, _2F_1\left (-\frac {1}{2},1;\frac {1}{2};\frac {a+b \tan (c+d x)}{a-i b}\right )}{a-i b}-\frac {(A+i B) \, _2F_1\left (-\frac {1}{2},1;\frac {1}{2};\frac {a+b \tan (c+d x)}{a+i b}\right )}{a+i b}\right )}{d \sqrt {a+b \tan (c+d x)}} \]

Antiderivative was successfully verified.

[In]

Integrate[(A + B*Tan[c + d*x])/(a + b*Tan[c + d*x])^(3/2),x]

[Out]

(I*(((A - I*B)*Hypergeometric2F1[-1/2, 1, 1/2, (a + b*Tan[c + d*x])/(a - I*b)])/(a - I*b) - ((A + I*B)*Hyperge
ometric2F1[-1/2, 1, 1/2, (a + b*Tan[c + d*x])/(a + I*b)])/(a + I*b)))/(d*Sqrt[a + b*Tan[c + d*x]])

________________________________________________________________________________________

fricas [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*tan(d*x+c))/(a+b*tan(d*x+c))^(3/2),x, algorithm="fricas")

[Out]

Timed out

________________________________________________________________________________________

giac [F(-2)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Exception raised: TypeError} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*tan(d*x+c))/(a+b*tan(d*x+c))^(3/2),x, algorithm="giac")

[Out]

Exception raised: TypeError >> An error occurred running a Giac command:INPUT:sage2:=int(sage0,x):;OUTPUT:Unab
le to check sign: (2*pi/x/2)>(-2*pi/x/2)Unable to check sign: (2*pi/x/2)>(-2*pi/x/2)Unable to check sign: (2*p
i/x/2)>(-2*pi/x/2)Unable to check sign: (2*pi/x/2)>(-2*pi/x/2)Unable to check sign: (2*pi/x/2)>(-2*pi/x/2)Unab
le to check sign: (2*pi/x/2)>(-2*pi/x/2)Unable to check sign: (2*pi/x/2)>(-2*pi/x/2)Unable to check sign: (2*p
i/x/2)>(-2*pi/x/2)Unable to check sign: (2*pi/x/2)>(-2*pi/x/2)Unable to check sign: (2*pi/x/2)>(-2*pi/x/2)Unab
le to check sign: (2*pi/x/2)>(-2*pi/x/2)Unable to check sign: (2*pi/x/2)>(-2*pi/x/2)Unable to check sign: (2*p
i/x/2)>(-2*pi/x/2)Unable to check sign: (2*pi/x/2)>(-2*pi/x/2)Unable to check sign: (2*pi/x/2)>(-2*pi/x/2)Unab
le to check sign: (2*pi/x/2)>(-2*pi/x/2)Unable to check sign: (2*pi/x/2)>(-2*pi/x/2)Unable to check sign: (2*p
i/x/2)>(-2*pi/x/2)Unable to check sign: (2*pi/x/2)>(-2*pi/x/2)Unable to check sign: (2*pi/x/2)>(-2*pi/x/2)Unab
le to check sign: (2*pi/x/2)>(-2*pi/x/2)Unable to check sign: (2*pi/x/2)>(-2*pi/x/2)Unable to check sign: (2*p
i/x/2)>(-2*pi/x/2)Unable to check sign: (2*pi/x/2)>(-2*pi/x/2)Unable to check sign: (2*pi/x/2)>(-2*pi/x/2)Unab
le to check sign: (2*pi/x/2)>(-2*pi/x/2)Unable to check sign: (2*pi/x/2)>(-2*pi/x/2)Unable to check sign: (2*p
i/x/2)>(-2*pi/x/2)Unable to check sign: (2*pi/x/2)>(-2*pi/x/2)Unable to check sign: (2*pi/x/2)>(-2*pi/x/2)Unab
le to check sign: (2*pi/x/2)>(-2*pi/x/2)Unable to check sign: (2*pi/x/2)>(-2*pi/x/2)Unable to check sign: (2*p
i/x/2)>(-2*pi/x/2)Unable to check sign: (2*pi/x/2)>(-2*pi/x/2)Unable to check sign: (2*pi/x/2)>(-2*pi/x/2)Unab
le to check sign: (2*pi/x/2)>(-2*pi/x/2)Unable to check sign: (2*pi/x/2)>(-2*pi/x/2)Unable to check sign: (2*p
i/x/2)>(-2*pi/x/2)Warning, need to choose a branch for the root of a polynomial with parameters. This might be
 wrong.The choice was done assuming [d]=[-65,8]sym2poly/r2sym(const gen & e,const index_m & i,const vecteur &
l) Error: Bad Argument ValueWarning, need to choose a branch for the root of a polynomial with parameters. Thi
s might be wrong.The choice was done assuming [d]=[-77,45]sym2poly/r2sym(const gen & e,const index_m & i,const
 vecteur & l) Error: Bad Argument Valuesym2poly/r2sym(const gen & e,const index_m & i,const vecteur & l) Error
: Bad Argument Valuesym2poly/r2sym(const gen & e,const index_m & i,const vecteur & l) Error: Bad Argument Valu
esym2poly/r2sym(const gen & e,const index_m & i,const vecteur & l) Error: Bad Argument Valuesym2poly/r2sym(con
st gen & e,const index_m & i,const vecteur & l) Error: Bad Argument Valuesym2poly/r2sym(const gen & e,const in
dex_m & i,const vecteur & l) Error: Bad Argument Valuesym2poly/r2sym(const gen & e,const index_m & i,const vec
teur & l) Error: Bad Argument Valuesym2poly/r2sym(const gen & e,const index_m & i,const vecteur & l) Error: Ba
d Argument Valuesym2poly/r2sym(const gen & e,const index_m & i,const vecteur & l) Error: Bad Argument Valuesym
2poly/r2sym(const gen & e,const index_m & i,const vecteur & l) Error: Bad Argument Valuesym2poly/r2sym(const g
en & e,const index_m & i,const vecteur & l) Error: Bad Argument Valuesym2poly/r2sym(const gen & e,const index_
m & i,const vecteur & l) Error: Bad Argument Valuesym2poly/r2sym(const gen & e,const index_m & i,const vecteur
 & l) Error: Bad Argument ValueWarning, integration of abs or sign assumes constant sign by intervals (correct
 if the argument is real):Check [abs(t_nostep^2-1)]Discontinuities at zeroes of t_nostep^2-1 were not checkedE
valuation time: 79.63Done

________________________________________________________________________________________

maple [B]  time = 0.30, size = 7951, normalized size = 57.62 \[ \text {output too large to display} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((A+B*tan(d*x+c))/(a+b*tan(d*x+c))^(3/2),x)

[Out]

result too large to display

________________________________________________________________________________________

maxima [F(-2)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Exception raised: ValueError} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*tan(d*x+c))/(a+b*tan(d*x+c))^(3/2),x, algorithm="maxima")

[Out]

Exception raised: ValueError >> Computation failed since Maxima requested additional constraints; using the 'a
ssume' command before evaluation *may* help (example of legal syntax is 'assume(b-a>0)', see `assume?` for mor
e details)Is b-a positive, negative or zero?

________________________________________________________________________________________

mupad [B]  time = 12.07, size = 5737, normalized size = 41.57 \[ \text {result too large to display} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((A + B*tan(c + d*x))/(a + b*tan(c + d*x))^(3/2),x)

[Out]

(log((((a + b*tan(c + d*x))^(1/2)*(16*A^2*b^10*d^3 + 32*A^2*a^2*b^8*d^3 - 32*A^2*a^6*b^4*d^3 - 16*A^2*a^8*b^2*
d^3) - ((((96*A^4*a^2*b^4*d^4 - 16*A^4*b^6*d^4 - 144*A^4*a^4*b^2*d^4)^(1/2) - 4*A^2*a^3*d^2 + 12*A^2*a*b^2*d^2
)/(a^6*d^4 + b^6*d^4 + 3*a^2*b^4*d^4 + 3*a^4*b^2*d^4))^(1/2)*(((((96*A^4*a^2*b^4*d^4 - 16*A^4*b^6*d^4 - 144*A^
4*a^4*b^2*d^4)^(1/2) - 4*A^2*a^3*d^2 + 12*A^2*a*b^2*d^2)/(a^6*d^4 + b^6*d^4 + 3*a^2*b^4*d^4 + 3*a^4*b^2*d^4))^
(1/2)*(a + b*tan(c + d*x))^(1/2)*(64*a*b^12*d^5 + 320*a^3*b^10*d^5 + 640*a^5*b^8*d^5 + 640*a^7*b^6*d^5 + 320*a
^9*b^4*d^5 + 64*a^11*b^2*d^5))/4 + 64*A*a*b^11*d^4 + 256*A*a^3*b^9*d^4 + 384*A*a^5*b^7*d^4 + 256*A*a^7*b^5*d^4
 + 64*A*a^9*b^3*d^4))/4)*(((96*A^4*a^2*b^4*d^4 - 16*A^4*b^6*d^4 - 144*A^4*a^4*b^2*d^4)^(1/2) - 4*A^2*a^3*d^2 +
 12*A^2*a*b^2*d^2)/(a^6*d^4 + b^6*d^4 + 3*a^2*b^4*d^4 + 3*a^4*b^2*d^4))^(1/2))/4 + 8*A^3*b^9*d^2 + 24*A^3*a^2*
b^7*d^2 + 24*A^3*a^4*b^5*d^2 + 8*A^3*a^6*b^3*d^2)*(((96*A^4*a^2*b^4*d^4 - 16*A^4*b^6*d^4 - 144*A^4*a^4*b^2*d^4
)^(1/2) - 4*A^2*a^3*d^2 + 12*A^2*a*b^2*d^2)/(a^6*d^4 + b^6*d^4 + 3*a^2*b^4*d^4 + 3*a^4*b^2*d^4))^(1/2))/4 + (l
og((((a + b*tan(c + d*x))^(1/2)*(16*A^2*b^10*d^3 + 32*A^2*a^2*b^8*d^3 - 32*A^2*a^6*b^4*d^3 - 16*A^2*a^8*b^2*d^
3) - ((-((96*A^4*a^2*b^4*d^4 - 16*A^4*b^6*d^4 - 144*A^4*a^4*b^2*d^4)^(1/2) + 4*A^2*a^3*d^2 - 12*A^2*a*b^2*d^2)
/(a^6*d^4 + b^6*d^4 + 3*a^2*b^4*d^4 + 3*a^4*b^2*d^4))^(1/2)*(((-((96*A^4*a^2*b^4*d^4 - 16*A^4*b^6*d^4 - 144*A^
4*a^4*b^2*d^4)^(1/2) + 4*A^2*a^3*d^2 - 12*A^2*a*b^2*d^2)/(a^6*d^4 + b^6*d^4 + 3*a^2*b^4*d^4 + 3*a^4*b^2*d^4))^
(1/2)*(a + b*tan(c + d*x))^(1/2)*(64*a*b^12*d^5 + 320*a^3*b^10*d^5 + 640*a^5*b^8*d^5 + 640*a^7*b^6*d^5 + 320*a
^9*b^4*d^5 + 64*a^11*b^2*d^5))/4 + 64*A*a*b^11*d^4 + 256*A*a^3*b^9*d^4 + 384*A*a^5*b^7*d^4 + 256*A*a^7*b^5*d^4
 + 64*A*a^9*b^3*d^4))/4)*(-((96*A^4*a^2*b^4*d^4 - 16*A^4*b^6*d^4 - 144*A^4*a^4*b^2*d^4)^(1/2) + 4*A^2*a^3*d^2
- 12*A^2*a*b^2*d^2)/(a^6*d^4 + b^6*d^4 + 3*a^2*b^4*d^4 + 3*a^4*b^2*d^4))^(1/2))/4 + 8*A^3*b^9*d^2 + 24*A^3*a^2
*b^7*d^2 + 24*A^3*a^4*b^5*d^2 + 8*A^3*a^6*b^3*d^2)*(-((96*A^4*a^2*b^4*d^4 - 16*A^4*b^6*d^4 - 144*A^4*a^4*b^2*d
^4)^(1/2) + 4*A^2*a^3*d^2 - 12*A^2*a*b^2*d^2)/(a^6*d^4 + b^6*d^4 + 3*a^2*b^4*d^4 + 3*a^4*b^2*d^4))^(1/2))/4 -
log(8*A^3*b^9*d^2 - ((a + b*tan(c + d*x))^(1/2)*(16*A^2*b^10*d^3 + 32*A^2*a^2*b^8*d^3 - 32*A^2*a^6*b^4*d^3 - 1
6*A^2*a^8*b^2*d^3) + (((96*A^4*a^2*b^4*d^4 - 16*A^4*b^6*d^4 - 144*A^4*a^4*b^2*d^4)^(1/2) - 4*A^2*a^3*d^2 + 12*
A^2*a*b^2*d^2)/(16*a^6*d^4 + 16*b^6*d^4 + 48*a^2*b^4*d^4 + 48*a^4*b^2*d^4))^(1/2)*(64*A*a*b^11*d^4 - (((96*A^4
*a^2*b^4*d^4 - 16*A^4*b^6*d^4 - 144*A^4*a^4*b^2*d^4)^(1/2) - 4*A^2*a^3*d^2 + 12*A^2*a*b^2*d^2)/(16*a^6*d^4 + 1
6*b^6*d^4 + 48*a^2*b^4*d^4 + 48*a^4*b^2*d^4))^(1/2)*(a + b*tan(c + d*x))^(1/2)*(64*a*b^12*d^5 + 320*a^3*b^10*d
^5 + 640*a^5*b^8*d^5 + 640*a^7*b^6*d^5 + 320*a^9*b^4*d^5 + 64*a^11*b^2*d^5) + 256*A*a^3*b^9*d^4 + 384*A*a^5*b^
7*d^4 + 256*A*a^7*b^5*d^4 + 64*A*a^9*b^3*d^4))*(((96*A^4*a^2*b^4*d^4 - 16*A^4*b^6*d^4 - 144*A^4*a^4*b^2*d^4)^(
1/2) - 4*A^2*a^3*d^2 + 12*A^2*a*b^2*d^2)/(16*a^6*d^4 + 16*b^6*d^4 + 48*a^2*b^4*d^4 + 48*a^4*b^2*d^4))^(1/2) +
24*A^3*a^2*b^7*d^2 + 24*A^3*a^4*b^5*d^2 + 8*A^3*a^6*b^3*d^2)*(((96*A^4*a^2*b^4*d^4 - 16*A^4*b^6*d^4 - 144*A^4*
a^4*b^2*d^4)^(1/2) - 4*A^2*a^3*d^2 + 12*A^2*a*b^2*d^2)/(16*a^6*d^4 + 16*b^6*d^4 + 48*a^2*b^4*d^4 + 48*a^4*b^2*
d^4))^(1/2) - log(8*A^3*b^9*d^2 - ((a + b*tan(c + d*x))^(1/2)*(16*A^2*b^10*d^3 + 32*A^2*a^2*b^8*d^3 - 32*A^2*a
^6*b^4*d^3 - 16*A^2*a^8*b^2*d^3) + (-((96*A^4*a^2*b^4*d^4 - 16*A^4*b^6*d^4 - 144*A^4*a^4*b^2*d^4)^(1/2) + 4*A^
2*a^3*d^2 - 12*A^2*a*b^2*d^2)/(16*a^6*d^4 + 16*b^6*d^4 + 48*a^2*b^4*d^4 + 48*a^4*b^2*d^4))^(1/2)*(64*A*a*b^11*
d^4 - (-((96*A^4*a^2*b^4*d^4 - 16*A^4*b^6*d^4 - 144*A^4*a^4*b^2*d^4)^(1/2) + 4*A^2*a^3*d^2 - 12*A^2*a*b^2*d^2)
/(16*a^6*d^4 + 16*b^6*d^4 + 48*a^2*b^4*d^4 + 48*a^4*b^2*d^4))^(1/2)*(a + b*tan(c + d*x))^(1/2)*(64*a*b^12*d^5
+ 320*a^3*b^10*d^5 + 640*a^5*b^8*d^5 + 640*a^7*b^6*d^5 + 320*a^9*b^4*d^5 + 64*a^11*b^2*d^5) + 256*A*a^3*b^9*d^
4 + 384*A*a^5*b^7*d^4 + 256*A*a^7*b^5*d^4 + 64*A*a^9*b^3*d^4))*(-((96*A^4*a^2*b^4*d^4 - 16*A^4*b^6*d^4 - 144*A
^4*a^4*b^2*d^4)^(1/2) + 4*A^2*a^3*d^2 - 12*A^2*a*b^2*d^2)/(16*a^6*d^4 + 16*b^6*d^4 + 48*a^2*b^4*d^4 + 48*a^4*b
^2*d^4))^(1/2) + 24*A^3*a^2*b^7*d^2 + 24*A^3*a^4*b^5*d^2 + 8*A^3*a^6*b^3*d^2)*(-((96*A^4*a^2*b^4*d^4 - 16*A^4*
b^6*d^4 - 144*A^4*a^4*b^2*d^4)^(1/2) + 4*A^2*a^3*d^2 - 12*A^2*a*b^2*d^2)/(16*a^6*d^4 + 16*b^6*d^4 + 48*a^2*b^4
*d^4 + 48*a^4*b^2*d^4))^(1/2) + (log(- ((((((96*B^4*a^2*b^4*d^4 - 16*B^4*b^6*d^4 - 144*B^4*a^4*b^2*d^4)^(1/2)
+ 4*B^2*a^3*d^2 - 12*B^2*a*b^2*d^2)/(a^6*d^4 + b^6*d^4 + 3*a^2*b^4*d^4 + 3*a^4*b^2*d^4))^(1/2)*(32*B*b^12*d^4
+ ((((96*B^4*a^2*b^4*d^4 - 16*B^4*b^6*d^4 - 144*B^4*a^4*b^2*d^4)^(1/2) + 4*B^2*a^3*d^2 - 12*B^2*a*b^2*d^2)/(a^
6*d^4 + b^6*d^4 + 3*a^2*b^4*d^4 + 3*a^4*b^2*d^4))^(1/2)*(a + b*tan(c + d*x))^(1/2)*(64*a*b^12*d^5 + 320*a^3*b^
10*d^5 + 640*a^5*b^8*d^5 + 640*a^7*b^6*d^5 + 320*a^9*b^4*d^5 + 64*a^11*b^2*d^5))/4 + 96*B*a^2*b^10*d^4 + 64*B*
a^4*b^8*d^4 - 64*B*a^6*b^6*d^4 - 96*B*a^8*b^4*d^4 - 32*B*a^10*b^2*d^4))/4 + (a + b*tan(c + d*x))^(1/2)*(16*B^2
*b^10*d^3 + 32*B^2*a^2*b^8*d^3 - 32*B^2*a^6*b^4*d^3 - 16*B^2*a^8*b^2*d^3))*(((96*B^4*a^2*b^4*d^4 - 16*B^4*b^6*
d^4 - 144*B^4*a^4*b^2*d^4)^(1/2) + 4*B^2*a^3*d^2 - 12*B^2*a*b^2*d^2)/(a^6*d^4 + b^6*d^4 + 3*a^2*b^4*d^4 + 3*a^
4*b^2*d^4))^(1/2))/4 - 24*B^3*a^3*b^6*d^2 - 24*B^3*a^5*b^4*d^2 - 8*B^3*a^7*b^2*d^2 - 8*B^3*a*b^8*d^2)*(((96*B^
4*a^2*b^4*d^4 - 16*B^4*b^6*d^4 - 144*B^4*a^4*b^2*d^4)^(1/2) + 4*B^2*a^3*d^2 - 12*B^2*a*b^2*d^2)/(a^6*d^4 + b^6
*d^4 + 3*a^2*b^4*d^4 + 3*a^4*b^2*d^4))^(1/2))/4 + (log(- ((((-((96*B^4*a^2*b^4*d^4 - 16*B^4*b^6*d^4 - 144*B^4*
a^4*b^2*d^4)^(1/2) - 4*B^2*a^3*d^2 + 12*B^2*a*b^2*d^2)/(a^6*d^4 + b^6*d^4 + 3*a^2*b^4*d^4 + 3*a^4*b^2*d^4))^(1
/2)*(32*B*b^12*d^4 + ((-((96*B^4*a^2*b^4*d^4 - 16*B^4*b^6*d^4 - 144*B^4*a^4*b^2*d^4)^(1/2) - 4*B^2*a^3*d^2 + 1
2*B^2*a*b^2*d^2)/(a^6*d^4 + b^6*d^4 + 3*a^2*b^4*d^4 + 3*a^4*b^2*d^4))^(1/2)*(a + b*tan(c + d*x))^(1/2)*(64*a*b
^12*d^5 + 320*a^3*b^10*d^5 + 640*a^5*b^8*d^5 + 640*a^7*b^6*d^5 + 320*a^9*b^4*d^5 + 64*a^11*b^2*d^5))/4 + 96*B*
a^2*b^10*d^4 + 64*B*a^4*b^8*d^4 - 64*B*a^6*b^6*d^4 - 96*B*a^8*b^4*d^4 - 32*B*a^10*b^2*d^4))/4 + (a + b*tan(c +
 d*x))^(1/2)*(16*B^2*b^10*d^3 + 32*B^2*a^2*b^8*d^3 - 32*B^2*a^6*b^4*d^3 - 16*B^2*a^8*b^2*d^3))*(-((96*B^4*a^2*
b^4*d^4 - 16*B^4*b^6*d^4 - 144*B^4*a^4*b^2*d^4)^(1/2) - 4*B^2*a^3*d^2 + 12*B^2*a*b^2*d^2)/(a^6*d^4 + b^6*d^4 +
 3*a^2*b^4*d^4 + 3*a^4*b^2*d^4))^(1/2))/4 - 24*B^3*a^3*b^6*d^2 - 24*B^3*a^5*b^4*d^2 - 8*B^3*a^7*b^2*d^2 - 8*B^
3*a*b^8*d^2)*(-((96*B^4*a^2*b^4*d^4 - 16*B^4*b^6*d^4 - 144*B^4*a^4*b^2*d^4)^(1/2) - 4*B^2*a^3*d^2 + 12*B^2*a*b
^2*d^2)/(a^6*d^4 + b^6*d^4 + 3*a^2*b^4*d^4 + 3*a^4*b^2*d^4))^(1/2))/4 - log(((((96*B^4*a^2*b^4*d^4 - 16*B^4*b^
6*d^4 - 144*B^4*a^4*b^2*d^4)^(1/2) + 4*B^2*a^3*d^2 - 12*B^2*a*b^2*d^2)/(16*a^6*d^4 + 16*b^6*d^4 + 48*a^2*b^4*d
^4 + 48*a^4*b^2*d^4))^(1/2)*((((96*B^4*a^2*b^4*d^4 - 16*B^4*b^6*d^4 - 144*B^4*a^4*b^2*d^4)^(1/2) + 4*B^2*a^3*d
^2 - 12*B^2*a*b^2*d^2)/(16*a^6*d^4 + 16*b^6*d^4 + 48*a^2*b^4*d^4 + 48*a^4*b^2*d^4))^(1/2)*(a + b*tan(c + d*x))
^(1/2)*(64*a*b^12*d^5 + 320*a^3*b^10*d^5 + 640*a^5*b^8*d^5 + 640*a^7*b^6*d^5 + 320*a^9*b^4*d^5 + 64*a^11*b^2*d
^5) - 32*B*b^12*d^4 - 96*B*a^2*b^10*d^4 - 64*B*a^4*b^8*d^4 + 64*B*a^6*b^6*d^4 + 96*B*a^8*b^4*d^4 + 32*B*a^10*b
^2*d^4) + (a + b*tan(c + d*x))^(1/2)*(16*B^2*b^10*d^3 + 32*B^2*a^2*b^8*d^3 - 32*B^2*a^6*b^4*d^3 - 16*B^2*a^8*b
^2*d^3))*(((96*B^4*a^2*b^4*d^4 - 16*B^4*b^6*d^4 - 144*B^4*a^4*b^2*d^4)^(1/2) + 4*B^2*a^3*d^2 - 12*B^2*a*b^2*d^
2)/(16*a^6*d^4 + 16*b^6*d^4 + 48*a^2*b^4*d^4 + 48*a^4*b^2*d^4))^(1/2) - 24*B^3*a^3*b^6*d^2 - 24*B^3*a^5*b^4*d^
2 - 8*B^3*a^7*b^2*d^2 - 8*B^3*a*b^8*d^2)*(((96*B^4*a^2*b^4*d^4 - 16*B^4*b^6*d^4 - 144*B^4*a^4*b^2*d^4)^(1/2) +
 4*B^2*a^3*d^2 - 12*B^2*a*b^2*d^2)/(16*a^6*d^4 + 16*b^6*d^4 + 48*a^2*b^4*d^4 + 48*a^4*b^2*d^4))^(1/2) - log(((
-((96*B^4*a^2*b^4*d^4 - 16*B^4*b^6*d^4 - 144*B^4*a^4*b^2*d^4)^(1/2) - 4*B^2*a^3*d^2 + 12*B^2*a*b^2*d^2)/(16*a^
6*d^4 + 16*b^6*d^4 + 48*a^2*b^4*d^4 + 48*a^4*b^2*d^4))^(1/2)*((-((96*B^4*a^2*b^4*d^4 - 16*B^4*b^6*d^4 - 144*B^
4*a^4*b^2*d^4)^(1/2) - 4*B^2*a^3*d^2 + 12*B^2*a*b^2*d^2)/(16*a^6*d^4 + 16*b^6*d^4 + 48*a^2*b^4*d^4 + 48*a^4*b^
2*d^4))^(1/2)*(a + b*tan(c + d*x))^(1/2)*(64*a*b^12*d^5 + 320*a^3*b^10*d^5 + 640*a^5*b^8*d^5 + 640*a^7*b^6*d^5
 + 320*a^9*b^4*d^5 + 64*a^11*b^2*d^5) - 32*B*b^12*d^4 - 96*B*a^2*b^10*d^4 - 64*B*a^4*b^8*d^4 + 64*B*a^6*b^6*d^
4 + 96*B*a^8*b^4*d^4 + 32*B*a^10*b^2*d^4) + (a + b*tan(c + d*x))^(1/2)*(16*B^2*b^10*d^3 + 32*B^2*a^2*b^8*d^3 -
 32*B^2*a^6*b^4*d^3 - 16*B^2*a^8*b^2*d^3))*(-((96*B^4*a^2*b^4*d^4 - 16*B^4*b^6*d^4 - 144*B^4*a^4*b^2*d^4)^(1/2
) - 4*B^2*a^3*d^2 + 12*B^2*a*b^2*d^2)/(16*a^6*d^4 + 16*b^6*d^4 + 48*a^2*b^4*d^4 + 48*a^4*b^2*d^4))^(1/2) - 24*
B^3*a^3*b^6*d^2 - 24*B^3*a^5*b^4*d^2 - 8*B^3*a^7*b^2*d^2 - 8*B^3*a*b^8*d^2)*(-((96*B^4*a^2*b^4*d^4 - 16*B^4*b^
6*d^4 - 144*B^4*a^4*b^2*d^4)^(1/2) - 4*B^2*a^3*d^2 + 12*B^2*a*b^2*d^2)/(16*a^6*d^4 + 16*b^6*d^4 + 48*a^2*b^4*d
^4 + 48*a^4*b^2*d^4))^(1/2) - (2*A*b)/(d*(a^2 + b^2)*(a + b*tan(c + d*x))^(1/2)) + (2*B*a)/(d*(a^2 + b^2)*(a +
 b*tan(c + d*x))^(1/2))

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {A + B \tan {\left (c + d x \right )}}{\left (a + b \tan {\left (c + d x \right )}\right )^{\frac {3}{2}}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*tan(d*x+c))/(a+b*tan(d*x+c))**(3/2),x)

[Out]

Integral((A + B*tan(c + d*x))/(a + b*tan(c + d*x))**(3/2), x)

________________________________________________________________________________________